Jason I.
Preszler

Introduction

Known Results
A Cubic
Family
Higher Degree Examples

A Quartic Family

References

An Infinite Family of Cubic Polynomials with Depth 1 Emergent Reducibility

Jason I. Preszler
University of Puget Sound
jpreszler@pugetsound.edu

January 11, 2015

What is Emergent Reducibility？

Jason I．
Preszler

Introduction
Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the iterates，

（1）If $f(x)$ is reducible，all iterates will remain reducible．
2．If $f(x)$ is irreducible，$f \circ n(x)$ may become reducible at some $n \geq 1$

Definition（Emergent Reducibility）

We say $f(x)$ has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \leq k \leq(n-1)$ and $f^{\circ n}(x)$ is reducible．

Note：Depth，n ，tracks the number of composition operations done．

What is Emergent Reducibility?

Jason I.
Preszler

Introduction
Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the iterates, $f(f(\ldots f(x) \ldots))=f^{\circ n}(x)$, of polynomials $f(x)$.
(1) If $f(x)$ is reducible, all iterates will remain reducible
(2) If $f(x)$ is irreducible, $f^{\circ n}(x)$ may become reducible at some $n \geq 1$

Definition (Emergent Reducibility)

We say $f(x)$ has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \leq k \leq(n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done

What is Emergent Reducibility?

Jason I.
Preszler

Known Results
A Cubic
Family
Higher Degree Examples

A Quartic Family

References

We are interested in studying the iterates, $f(f(\ldots f(x) \ldots))=f^{\circ n}(x)$, of polynomials $f(x)$.
(1) If $f(x)$ is reducible, all iterates will remain reducible.
(2) If $f(x)$ is irreducible, $f^{\circ n}(x)$ may become reducible at
some $n \geq 1$

Definition (Emergent Reducibility)

We say $f(x)$ has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \leq k \leq(n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done

What is Emergent Reducibility?

Jason I.
Preszler

A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the iterates, $f(f(\ldots f(x) \ldots))=f^{\circ n}(x)$, of polynomials $f(x)$.
(1) If $f(x)$ is reducible, all iterates will remain reducible.
(2) If $f(x)$ is irreducible, $f^{\circ n}(x)$ may become reducible at some $n \geq 1$.

Definition (Emergent Reducibility)

We say $f(x)$ has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \leq k \leq(n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done

What is Emergent Reducibility?

Jason I.
Preszler

A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the iterates, $f(f(\ldots f(x) \ldots))=f^{\circ n}(x)$, of polynomials $f(x)$.
(1) If $f(x)$ is reducible, all iterates will remain reducible.
(2) If $f(x)$ is irreducible, $f^{\circ n}(x)$ may become reducible at some $n \geq 1$.

Definition (Emergent Reducibility)

We say $f(x)$ has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \leq k \leq(n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done.

UNIVERSITY of PUGET

Emergent Reducibility: Known Results

Jason I.
Preszler

Introduction

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is thin
- Odoni, [Odo85]: If f is p-Fisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF ${ }^{+}$12]: There are finitely many quadratics with $E R$ at depth $n \geq 2$ if certain conditions are met.
- $\left[\mathrm{CCF}^{+}\right.$12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^{k}-d$ if you pass to an appropriate extension and related ER of $x^{k}-d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^{2}+m$ has ER at depth 1

Emergent Reducibility: Known Results

Jason I.
Preszler

Introduction

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is thin.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein
- R. Jones 2012 REU, [CCF+12]: There are finitely many quadratics with $E R$ at depth $n \geq 2$ if certain conditions are met.
- [CCF+12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^{k}-d$ if you pass to an appropriate extension and related ER of $x^{k}-d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^{2}+m$ has ER at depth 1

Emergent Reducibility: Known Results

Jason I.
Preszler

Introduction

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is thin.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF ${ }^{+}$12]: There are finitely many quadratics with $E R$ at depth $n \geq 2$ if certain conditions are met.
- [CCF+12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF021 proved that ER always occurs for $x^{k}-d$ if you pass to an appropriate extension and related ER of $x^{k}-d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{(D)}$ such that $x^{2}+m$ has ER at depth 1

Emergent Reducibility: Known Results

Jason I. Preszler

Introduction

Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is thin.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF ${ }^{+}$12]: There are finitely many quadratics with ER at depth $n \geq 2$ if certain conditions are met.
- [CCF ${ }^{+}$12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF021 proved that ER always occurs for $x^{k}-d$ if you pass to an appropriate extension and related ER of $x^{k}-d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{D}$ such that $x^{2}+m$ has ER at depth 1

Emergent Reducibility: Known Results

Jason I.
Preszler

Introduction

Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is thin.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF ${ }^{+}$12]: There are finitely many quadratics with ER at depth $n \geq 2$ if certain conditions are met.
- CCCF $^{+}$12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^{k}-d$ if you pass to an appropriate extension and related ER of $x^{k}-d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^{2}+m$ has ER at depth 1

Emergent Reducibility: Known Results

Jason I.
Preszler

- The set of polynomials with emergent reducibility is thin.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF ${ }^{+}$12]: There are finitely many quadratics with ER at depth $n \geq 2$ if certain conditions are met.
- [CCF ${ }^{+}$12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^{k}-d$ if you pass to an appropriate extension and related ER of $x^{k}-d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^{2}+m$ has ER at depth 1 .

Emergent Reducibility: Known Results

Jason I.
Preszler

- The set of polynomials with emergent reducibility is thin.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF ${ }^{+}$12]: There are finitely many quadratics with ER at depth $n \geq 2$ if certain conditions are met.
- [CCF ${ }^{+}$12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^{k}-d$ if you pass to an appropriate extension and related ER of $x^{k}-d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^{2}+m$ has ER at depth 1.
$-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a:$ Part 1

Jason I.
Preszler

Introduction

Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

Theorem (Pre14)

For all $a \in \mathbb{Z}$, the cubic polynomial $f_{a}(x)=-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a$ has iterate $f_{a} \circ f_{a}(x)$ that factors into the cubic and sextic with coefficients:

$$
-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a: \text { Part } 1
$$

Jason I.
Preszler

Theorem ([Pre14])
For all $a \in \mathbb{Z}$, the cubic polynomial $f_{a}(x)=-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a$ has iterate $f_{a} \circ f_{a}(x)$ that factors into the cubic and sextic with coefficients:

degree	Cubic	Sextic
0	$-4 a^{2}-4 a+1$	$2 a^{2}$
1	$-16 a^{2}+12 a+2$	$16 a^{2}+1$
2	$32 a^{2}+16 a$	$-4 a-2$
3	$32 a^{2}$	$-160 a^{2}-16 a-4$
4	0	$32 a$
5	0	$256 a^{2}+32 a$
6	0	$128 a^{2}$

$-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a:$ Part 2

Jason I.
Preszler

Introduction

Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

Lemma (Pre14)

The cubics $f_{a}(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \bmod (3)$

Computationally, $f_{a}(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^{6}$

Theorem ([Pre14)
 There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

Other cubic families exist

$$
-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a: \text { Part } 2
$$

Jason I.
Preszler

Introduction
Known Results

A Cubic

 FamilyHigher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

The cubics $f_{a}(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \bmod (3)$.

Computationally, $f_{a}(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^{6}$

Theorem (Pre14)

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

Other cubic families exist

$$
-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a: \text { Part } 2
$$

Jason I.
Preszler

Introduction
Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

The cubics $f_{a}(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \bmod (3)$.

Computationally, $f_{a}(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^{6}$.

Theorem (Pre14)

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth
1 emergent reducibility.

Other cubic families exist

$$
-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a: \text { Part } 2
$$

Jason I.
Preszler

Introduction
Known Results
A Cubic
Family
Higher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

The cubics $f_{a}(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \bmod (3)$.

Computationally, $f_{a}(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^{6}$.

Theorem ([Pre14])

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

Other cubic families exist

$$
-8 a x^{3}-(8 a+2) x^{2}+(4 a-1) x+a: \text { Part } 2
$$

Jason I.
Preszler

Introduction
Known Results
A Cubic
Family
Higher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

The cubics $f_{a}(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \bmod (3)$.

Computationally, $f_{a}(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^{6}$.

Theorem ([Pre14])

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

Other cubic families exist

Monic Cubic Examples

Jason I.
Preszler

Introduction
Known Results
A Cubic
Family
Higher Degree Examples

A Quartic Family

References

All have emergent reducibility at depth 1

- $x^{3} \pm 9 x^{2}+23 x \pm 13$
- $x^{3} \pm 6 x^{2}+11 x \pm 5$
- $x^{3} \pm x^{2}-3 x \mp 1$
- $x^{3} \pm 4 x^{2}+3 x \mp 1$

In all cases $f \circ f$ factors as cubic and $6^{\text {th }}$ deg. poly.

Monic Cubic Examples

Jason I.
Preszler

Introduction
Known Results
A Cubic
Family
Higher Degree Examples

A Quartic Family

References

All have emergent reducibility at depth 1

- $x^{3} \pm 9 x^{2}+23 x \pm 13$
- $x^{3} \pm 6 x^{2}+11 x \pm 5$
- $x^{3} \pm x^{2}-3 x \mp 1$
- $x^{3} \pm 4 x^{2}+3 x \mp 1$

In all cases $f \circ f$ factors as cubic and $6^{\text {th }}$ deg. poly.

Monic Quartic Examples

Jason I.
Preszler

Introduction
Known Results
A Cubic
Family
Higher Degree Examples

A Quartic Family

References

All have emergent reducibility at depth 1

- $x^{4}-8 x^{3}+13 x^{2}+12 x+1$
- $x^{4}-5 x^{3}+5 x^{2}+3 x-1$
- $x^{4}-2 x^{3}-2 x^{2}+3 x+1$
- $x^{4}-7 x^{2}+13$
- $x^{4}+3 x^{3}-x+1$
- and more

Factors have degrees $(8,8)$ or $(4,12)$

Monic Quartic Examples

Jason I.
Preszler

Introduction
Known Results
A Cubic
Family
Higher Degree Examples

A Quartic Family

References

All have emergent reducibility at depth 1

- $x^{4}-8 x^{3}+13 x^{2}+12 x+1$
- $x^{4}-5 x^{3}+5 x^{2}+3 x-1$
- $x^{4}-2 x^{3}-2 x^{2}+3 x+1$
- $x^{4}-7 x^{2}+13$
- $x^{4}+3 x^{3}-x+1$
- and more

Factors have degrees $(8,8)$ or $(4,12)$
$-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a:$ Part 1

Theorem (Pre15])

Jason I.
Preszler

Introduction
Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

For all $a \in \mathbb{Z}$, the quartic polynomial
$q_{a}(x)=-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a$ satisfies $g_{a} \circ g_{a}(x)=h(x) k(x)$ with coefficients:

Jason I.
Preszler

Introduction
Known Results
A Cubic Family

Higher Degree
Examples
A Quartic Family

References

Theorem ([Pre15])

For all $a \in \mathbb{Z}$, the quartic polynomial $g_{a}(x)=-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a$ satisfies $g_{a} \circ g_{a}(x)=h(x) k(x)$ with coefficients:

degree	$h(x)$	$k(x)$
0	$-a(a-2)$	$a^{3}-a-1$
1	$(a-1)(4 a+1)$	$-4 a^{3}-3 a^{2}-a-1$
2	$-(a+1)(2(a+1)-1)$	$2 a^{3}+3 a^{2}+2 a-1$
3	$-a(8 a-1)$	$a\left(8 a^{2}+9 a+6\right)$
4	$a(5 a+3)$	$-a\left(5 a^{2}+3 a+3\right)$
5	$a(8 a+3)$	$-a^{2}(8 a+9)$
6	$-a(2 a-1)$	$a^{2}(2 a-3)$
7	$-4 a^{2}$	$4 a^{3}$
8	$-a^{2}$	a^{3}

$-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a:$ Part 2

Jason I.
Preszler

Introduction
Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

Theorem (Pre15)

The quartics $g_{a}(x)=-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a$
are irreducibile over \mathbb{Q} for $a \geq 1$ if and only if a is not an oblong number $\left(a_{n}=n(n+1)\right.$, OEIS A002378)

Corollary (Pre15]

There are infinitely many integer quartics with depth 1 emergent reducibility.

$$
-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a: \text { Part } 2
$$

Jason I.
Preszler

Introduction

Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

Theorem ([Pre15])

The quartics $g_{a}(x)=-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a$ are irreducibile over \mathbb{Q} for $a \geq 1$ if and only if a is not an oblong number $\left(a_{n}=n(n+1)\right.$, OEIS A002378).

Corollary (Pre15)

There are infinitely many integer quartics with depth 1
emergent reducibility.

$$
-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a: \text { Part } 2
$$

Jason I.
Preszler

Introduction
Known Results
A Cubic Family

Higher Degree Examples

A Quartic Family

References

Theorem ([Pre15])

The quartics $g_{a}(x)=-a x^{4}-2 a x^{3}+(a+1) x^{2}+(2 a+1) x-a$ are irreducibile over \mathbb{Q} for $a \geq 1$ if and only if a is not an oblong number ($a_{n}=n(n+1)$, OEIS A002378).

Corollary ([Pre15])

There are infinitely many integer quartics with depth 1 emergent reducibility.

References

Jason I． Preszler

围 K．Chamberlin，E．Colbert，S．Frechette，P．Hefferman， R．Jones，and S．Orchard，Newly reducible iterates in families of quadratic polynomials，ArXiv e－prints（2012）．
國 Lynda Danielson and Burton Fein，On the irreducibility of the iterates of $x^{n}-b$ ，Proc．Amer．Math．Soc． 130 （2002）， no．6，1589－1596（electronic）．
R．W．K．Odoni，The galois theory of iterates and composites of polynomials，Proc．London Math．Soc． 51 （1985），no．3，385－414（electronic）．
園 J．I．Preszler，An Infinite Family of Cubics with Emergent Reducibility at Depth 1，ArXiv e－prints（2014）．
囯－An Infinite Family of Quartics with Depth 1 Emergent Reducibility Related to the Oblong Numbers，In Preparation（2015）．

