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What is Emergent Reducibility?

We are interested in studying the iterates,
f(f(. . . f(x) . . . )) = f◦n(x), of polynomials f(x).

1 If f(x) is reducible, all iterates will remain reducible.

2 If f(x) is irreducible, f◦n(x) may become reducible at
some n ≥ 1.

Definition (Emergent Reducibility)

We say f(x) has emergent reducibility at depth n if f◦k(x) is
irreducible for 0 ≤ k ≤ (n− 1) and f◦n(x) is reducible.

Note: Depth, n, tracks the number of composition operations
done.
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Emergent Reducibility: Known Results

The set of polynomials with emergent reducibility is thin.

Odoni, [Odo85]: If f is p-Eisenstein then f◦n is
p-Eisenstein.

R. Jones 2012 REU, [CCF+12]: There are finitely many
quadratics with ER at depth n ≥ 2 if certain conditions
are met.

[CCF+12] Iterates of quadratics that have ER will factor
into 2 equal degree factors.

Danielson and Fein, [DF02] proved that ER always occurs
for xk − d if you pass to an appropriate extension and
related ER of xk − d to Diophantine problems.

[DF02] There are infinitely many m ∈ Q such that x2 +m
has ER at depth 1.
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−8ax3 − (8a+ 2)x2 + (4a− 1)x+ a: Part 1

Theorem ([Pre14])

For all a ∈ Z, the cubic polynomial
fa(x) = −8ax3 − (8a+ 2)x2 + (4a− 1)x+ a has iterate
fa ◦ fa(x) that factors into the cubic and sextic with
coefficients:

degree Cubic Sextic
0 −4a2 − 4a+ 1 2a2

1 −16a2 + 12a+ 2 16a2 + 1
2 32a2 + 16a −4a− 2
3 32a2 −160a2 − 16a− 4
4 0 32a
5 0 256a2 + 32a
6 0 128a2
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−8ax3 − (8a+ 2)x2 + (4a− 1)x+ a: Part 2

Lemma ([Pre14])

The cubics fa(x) are irreducible over Q for a 6= 0 mod (3).

Computationally, fa(x) is irreducible for all a 6= 0 with
|a| ≤ 106.

Theorem ([Pre14])

There are infinitely many cubic polynomials in Z[x] with depth
1 emergent reducibility.

Other cubic families exist
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Monic Cubic Examples

All have emergent reducibility at depth 1

x3 ± 9x2 + 23x± 13

x3 ± 6x2 + 11x± 5

x3 ± x2 − 3x∓ 1

x3 ± 4x2 + 3x∓ 1

In all cases f ◦ f factors as cubic and 6th deg. poly.
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Monic Quartic Examples

All have emergent reducibility at depth 1

x4 − 8x3 + 13x2 + 12x+ 1

x4 − 5x3 + 5x2 + 3x− 1

x4 − 2x3 − 2x2 + 3x+ 1

x4 − 7x2 + 13

x4 + 3x3 − x+ 1

and more

Factors have degrees (8, 8) or (4, 12)
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−ax4 − 2ax3 + (a+ 1)x2 + (2a+ 1)x− a: Part 1

Theorem ([Pre15])

For all a ∈ Z, the quartic polynomial
ga(x) = −ax4 − 2ax3 + (a+ 1)x2 + (2a+ 1)x− a satisfies
ga ◦ ga(x) = h(x)k(x) with coefficients:

degree h(x) k(x)
0 −a(a− 2) a3 − a− 1
1 (a− 1)(4a+ 1) −4a3 − 3a2 − a− 1
2 −(a+ 1)(2(a+ 1)− 1) 2a3 + 3a2 + 2a− 1
3 −a(8a− 1) a(8a2 + 9a+ 6)
4 a(5a+ 3) −a(5a2 + 3a+ 3)
5 a(8a+ 3) −a2(8a+ 9)
6 −a(2a− 1) a2(2a− 3)
7 −4a2 4a3

8 −a2 a3
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−ax4 − 2ax3 + (a+ 1)x2 + (2a+ 1)x− a: Part 2

Theorem ([Pre15])

The quartics ga(x) = −ax4− 2ax3 + (a+1)x2 + (2a+1)x− a
are irreducibile over Q for a ≥ 1 if and only if a is not an
oblong number (an = n(n+ 1), OEIS A002378).

Corollary ([Pre15])

There are infinitely many integer quartics with depth 1
emergent reducibility.
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