

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

An Infinite Family of Cubic Polynomials with Depth 1 Emergent Reducibility

Jason I. Preszler

University of Puget Sound

jpreszler@pugetsound.edu

January 11, 2015

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the **iterates**, $f(f(\ldots f(x) \ldots)) = f^{\circ n}(x)$, of polynomials f(x).

If f(x) is reducible, all iterates will remain reducible.
If f(x) is irreducible, f^{on}(x) may become reducible at some n > 1

Definition (Emergent Reducibility)

We say f(x) has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \le k \le (n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the **iterates**, $f(f(\ldots f(x) \ldots)) = f^{\circ n}(x)$, of polynomials f(x).

If f(x) is reducible, all iterates will remain reducible.
 If f(x) is irreducible, f^{on}(x) may become reducible at some n ≥ 1.

Definition (Emergent Reducibility)

We say f(x) has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \le k \le (n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the **iterates**, $f(f(\ldots f(x) \ldots)) = f^{\circ n}(x)$, of polynomials f(x).

If f(x) is reducible, all iterates will remain reducible.
 If f(x) is irreducible, f^{on}(x) may become reducible at some n ≥ 1.

Definition (Emergent Reducibility)

We say f(x) has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \le k \le (n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the **iterates**, $f(f(\ldots f(x) \ldots)) = f^{\circ n}(x)$, of polynomials f(x).

• If f(x) is reducible, all iterates will remain reducible.

❷ If f(x) is irreducible, $f^{\circ n}(x)$ may become reducible at some n ≥ 1.

Definition (Emergent Reducibility)

We say f(x) has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \le k \le (n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

We are interested in studying the **iterates**, $f(f(\ldots f(x) \ldots)) = f^{\circ n}(x)$, of polynomials f(x).

• If f(x) is reducible, all iterates will remain reducible.

❷ If f(x) is irreducible, $f^{\circ n}(x)$ may become reducible at some n ≥ 1.

Definition (Emergent Reducibility)

We say f(x) has emergent reducibility at depth n if $f^{\circ k}(x)$ is irreducible for $0 \le k \le (n-1)$ and $f^{\circ n}(x)$ is reducible.

Note: Depth, n, tracks the number of composition operations done.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is **thin**.
- Odoni, [Odo85]: If f is p-Eisenstein then f^{on} is p-Eisenstein.
- R. Jones 2012 REU, [CCF⁺12]: There are finitely many quadratics with ER at depth $n \ge 2$ if certain conditions are met.
- [CCF⁺12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^k - d$ if you pass to an appropriate extension and related ER of $x^k - d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^2 + m$ has ER at depth 1.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is **thin**.
- Odoni, [Odo85]: If f is p-Eisenstein then f^{on} is p-Eisenstein.
- R. Jones 2012 REU, [CCF⁺12]: There are finitely many quadratics with ER at depth $n \ge 2$ if certain conditions are met.
- [CCF⁺12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^k - d$ if you pass to an appropriate extension and related ER of $x^k - d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^2 + m$ has ER at depth 1.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is **thin**.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF⁺12]: There are finitely many quadratics with ER at depth $n \ge 2$ if certain conditions are met.
- [CCF⁺12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^k - d$ if you pass to an appropriate extension and related ER of $x^k - d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^2 + m$ has ER at depth 1.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is **thin**.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF⁺12]: There are finitely many quadratics with ER at depth $n \ge 2$ if certain conditions are met.
- [CCF⁺12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^k d$ if you pass to an appropriate extension and related ER of $x^k d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^2 + m$ has ER at depth 1.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is **thin**.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF⁺12]: There are finitely many quadratics with ER at depth $n \ge 2$ if certain conditions are met.
- [CCF⁺12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^k d$ if you pass to an appropriate extension and related ER of $x^k d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^2 + m$ has ER at depth 1.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is **thin**.
- Odoni, [Odo85]: If f is p-Eisenstein then $f^{\circ n}$ is p-Eisenstein.
- R. Jones 2012 REU, [CCF⁺12]: There are finitely many quadratics with ER at depth $n \ge 2$ if certain conditions are met.
- [CCF⁺12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^k d$ if you pass to an appropriate extension and related ER of $x^k d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^2 + m$ has ER at depth 1.

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

- The set of polynomials with emergent reducibility is **thin**.
- Odoni, [Odo85]: If f is p-Eisenstein then f^{on} is p-Eisenstein.
- R. Jones 2012 REU, [CCF⁺12]: There are finitely many quadratics with ER at depth $n \ge 2$ if certain conditions are met.
- [CCF⁺12] Iterates of quadratics that have ER will factor into 2 equal degree factors.
- Danielson and Fein, [DF02] proved that ER always occurs for $x^k - d$ if you pass to an appropriate extension and related ER of $x^k - d$ to Diophantine problems.
- [DF02] There are infinitely many $m \in \mathbb{Q}$ such that $x^2 + m$ has ER at depth 1.

 $-8ax^3 - (8a+2)x^2 + (4a-1)x + a$: Part 1

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

For all $a \in \mathbb{Z}$, the cubic polynomial $f_a(x) = -8ax^3 - (8a+2)x^2 + (4a-1)x + a$ has iterate $f_a \circ f_a(x)$ that factors into the cubic and sextic with coefficients:

ヘロト A摺と A注と A注と

Э

$$-8ax^3 - (8a+2)x^2 + (4a-1)x + a$$
: Part 1

Theorem ([Pre14])

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

For all $a \in \mathbb{Z}$, the cubic polynomial $f_a(x) = -8ax^3 - (8a+2)x^2 + (4a-1)x + a$ has iterate $f_a \circ f_a(x)$ that factors into the cubic and sextic with coefficients:

degree	Cubic	Sextic
0	$-4a^2 - 4a + 1$	$2a^2$
1	$-16a^2 + 12a + 2$	$16a^2 + 1$
2	$32a^2 + 16a$	-4a - 2
3	$32a^2$	$-160a^2 - 16a - 4$
4	0	32a
5	0	$256a^2 + 32a$
6	0	$128a^{2}$

 $-8ax^3 - (8a+2)x^2 + (4a-1)x + a$: Part 2

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

he cubics $f_a(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \mod (3)$.

Computationally, $f_a(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^6.$

Theorem ([Pre14])

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

 $-8ax^3 - (8a+2)x^2 + (4a-1)x + a$: Part 2

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

The cubics $f_a(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \mod (3)$.

Computationally, $f_a(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^6.$

Theorem ([Pre14])

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

$$-8ax^3 - (8a+2)x^2 + (4a-1)x + a$$
: Part 2

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

The cubics $f_a(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \mod (3)$.

Computationally, $f_a(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^6.$

[Pre14]

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$-8ax^3 - (8a+2)x^2 + (4a-1)x + a$$
: Part 2

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

The cubics $f_a(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \mod (3)$.

Computationally, $f_a(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^6.$

Theorem ([Pre14])

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$-8ax^3 - (8a+2)x^2 + (4a-1)x + a$$
: Part 2

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

Lemma ([Pre14])

The cubics $f_a(x)$ are irreducible over \mathbb{Q} for $a \neq 0 \mod (3)$.

Computationally, $f_a(x)$ is irreducible for all $a \neq 0$ with $|a| \leq 10^6$.

Theorem ([Pre14])

There are infinitely many cubic polynomials in $\mathbb{Z}[x]$ with depth 1 emergent reducibility.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Monic Cubic Examples

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

All have emergent reducibility at depth 1

• $x^3 \pm 9x^2 + 23x \pm 13$

- $x^3 \pm 6x^2 + 11x \pm 5$
- $x^3 \pm x^2 3x \mp 1$
- $x^3 \pm 4x^2 + 3x \mp 1$

In all cases $f \circ f$ factors as cubic and 6^{th} deg. poly.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Monic Cubic Examples

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

All have emergent reducibility at depth 1

• $x^3 \pm 9x^2 + 23x \pm 13$

- $x^3 \pm 6x^2 + 11x \pm 5$
- $x^3 \pm x^2 3x \mp 1$
- $x^3 \pm 4x^2 + 3x \mp 1$

In all cases $f \circ f$ factors as cubic and 6^{th} deg. poly.

Monic Quartic Examples

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

All have emergent reducibility at depth 1

• $x^4 - 8x^3 + 13x^2 + 12x + 1$

•
$$x^4 - 5x^3 + 5x^2 + 3x - 1$$

•
$$x^4 - 2x^3 - 2x^2 + 3x + 1$$

•
$$x^4 - 7x^2 + 13$$

•
$$x^4 + 3x^3 - x + 1$$

and more

Factors have degrees (8,8) or (4,12)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Monic Quartic Examples

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

All have emergent reducibility at depth 1

•
$$x^4 - 8x^3 + 13x^2 + 12x + 1$$

•
$$x^4 - 5x^3 + 5x^2 + 3x - 1$$

•
$$x^4 - 2x^3 - 2x^2 + 3x + 1$$

•
$$x^4 - 7x^2 + 13$$

•
$$x^4 + 3x^3 - x + 1$$

and more

Factors have degrees (8,8) or (4,12)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

$$-ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$$
: Part 1

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

For all $a \in \mathbb{Z}$, the quartic polynomial $g_a(x) = -ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$ satisfies $g_a \circ g_a(x) = h(x)k(x)$ with coefficients:

ヘロア 人間 アメヨア イヨア

Ξ.

$$-ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$$
: Part 1

Theorem ([Pre15])

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

For all $a \in \mathbb{Z}$, the quartic polynomial $g_a(x) = -ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$ satisfies $g_a \circ g_a(x) = h(x)k(x)$ with coefficients:

degree	h(x)	k(x)
0	-a(a-2)	$a^3 - a - 1$
1	(a-1)(4a+1)	$-4a^3 - 3a^2 - a - 1$
2	-(a+1)(2(a+1)-1)	$2a^3 + 3a^2 + 2a - 1$
3	-a(8a-1)	$a(8a^2 + 9a + 6)$
4	a(5a + 3)	$-a(5a^2+3a+3)$
5	a(8a + 3)	$-a^2(8a+9)$
6	-a(2a-1)	$a^2(2a-3)$
7	$-4a^{2}$	$4a^{3}$
8	$-a^2$	a^3

 $-ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$: Part 2

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

Theorem ([Pre15])

The quartics $g_a(x) = -ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$ are irreducibile over \mathbb{Q} for $a \ge 1$ if and only if a is not an oblong number $(a_n = n(n+1), \text{ OEIS A002378}).$

- 日本 - 1 日本 - 日本 - 日本

Corollary ([Pre15])

There are infinitely many integer quartics with depth 1 emergent reducibility.

 $-ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$: Part 2

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

Theorem ([Pre15])

The quartics $g_a(x) = -ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$ are irreducibile over \mathbb{Q} for $a \ge 1$ if and only if a is not an oblong number $(a_n = n(n+1), OEIS A002378)$.

Corollary ([Pre15]

There are infinitely many integer quartics with depth 1 emergent reducibility.

 $-ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$: Part 2

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

Theorem ([Pre15])

The quartics $g_a(x) = -ax^4 - 2ax^3 + (a+1)x^2 + (2a+1)x - a$ are irreducibile over \mathbb{Q} for $a \ge 1$ if and only if a is not an oblong number $(a_n = n(n+1), OEIS A002378)$.

Corollary ([Pre15])

There are infinitely many integer quartics with depth 1 emergent reducibility.

References

Jason I. Preszler

Introduction

Known Results

A Cubic Family

Higher Degree Examples

A Quartic Family

References

 K. Chamberlin, E. Colbert, S. Frechette, P. Hefferman, R. Jones, and S. Orchard, *Newly reducible iterates in families of quadratic polynomials*, ArXiv e-prints (2012).

Lynda Danielson and Burton Fein, On the irreducibility of the iterates of $x^n - b$, Proc. Amer. Math. Soc. **130** (2002), no. 6, 1589–1596 (electronic).

 R.W.K. Odoni, The galois theory of iterates and composites of polynomials, Proc. London Math. Soc. 51 (1985), no. 3, 385–414 (electronic).

An Infinite Family of Quartics with Depth 1 Emergent Reducibility Related to the Oblong Numbers, In Preparation (2015).